构建下一代决策智能体:超越自回归,生成长序列规划轨迹的扩散模型
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《构建下一代决策智能体:超越自回归,生成长序列规划轨迹的扩散模型》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!
设想一下,当你站在房间内,准备向门口走去,你是通过自回归的方式逐步规划路径吗?实际上,你的路径是一次性整体生成的。
最新研究指出,利用扩散模型的规划模块可以同时生成长序列的轨迹规划,更符合人类的决策方式。此外,扩散模型在策略表征和数据合成方面还能为现有的决策智能算法提供更为优化的方案。
来自上海交通大学的团队撰写的综述论文《Diffusion Models for Reinforcement Learning: A Survey》梳理了扩散模型在强化学习相关领域的应用。综述指出现有强化学习算法面临长序列规划误差累积、策略表达能力受限、交互数据不足等挑战,而扩散模型已经展现出解决强化学习问题中的优势,并为应对上述长期以来的挑战带来新的思路。
论文链接:https://arxiv.org/abs/2311.01223
项目地址:https://github.com/apexrl/Diff4RLSurvey
该综述对扩散模型在强化学习中的作用进行了分类,总结了不同强化学习场景中扩散模型的成功案例。最后,综述展望了未来利用扩散模型解决强化学习问题的发展方向。
图中展示了扩散模型在经典智能体-环境-经验回放池循环中的作用。与传统解决方案相比,扩散模型为系统引入了新的元素,提供了更全面的信息交互和学习机会。通过这种方式,智能体能够更好地适应环境变化,并且优化其决策
扩散模型在强化学习中扮演的角色
文章根据扩散模型在强化学习中扮演角色的不同,分类比较了扩散模型的应用方式和特点。
图 2:扩散模型在强化学习中扮演的不同角色。
轨迹规划
强化学习中的规划指通过使用动态模型在想象中做决策,再选择最大化累积奖励的适当动作。规划的过程通常会探索各种动作和状态的序列,从而提升决策的长期效果。在基于模型的强化学习(MBRL)框架中,规划序列通常以自回归方式进行模拟,导致累积误差。扩散模型可以同时生成多步规划序列。现有文章用扩散模型生成的目标非常多样,包括 (s,a,r)、(s,a)、仅有 s、仅有 a 等等。为了在在线评估时生成高奖励的轨迹,许多工作使用了有分类器或无分类器的引导采样技术。
策略表征
扩散规划器更近似传统强化学习中的 MBRL,与之相对,将扩散模型作为策略更类似于无模型强化学习。Diffusion-QL 首先将扩散策略与 Q 学习框架结合。由于扩散模型拟合多模态分布的能力远超传统模型,扩散策略在由多个行为策略采样的多模态数据集中表现良好。扩散策略与普通策略相同,通常以状态作为条件生成动作,同时考虑最大化 Q (s,a) 函数。Diffusion-QL 等方法在扩散模型训练时加上加权的价值函数项,而 CEP 从能量的视角构造加权回归目标,用价值函数作为因子,调整扩散模型学到的动作分布。
数据合成
扩散模型可以作为数据合成器,来缓解离线或在线强化学习中数据稀少的问题。传统强化学习数据增强方法通常只能对原有数据进行小幅扰动,而扩散模型强大的分布拟合能力使其可以直接学习整个数据集的分布,再采样出新的高质量数据。
其他类型
除了以上几类,还有一些零散的工作以其他方式使用扩散模型。例如,DVF 利用扩散模型估计值函数。LDCQ 首先将轨迹编码到隐空间上,再在隐空间上应用扩散模型。PolyGRAD 用扩散模型学习环境动态转移,允许策略和模型交互来提升策略学习效率。
在不同强化学习相关问题中的应用
离线强化学习
扩散模型的引入有助于离线强化学习策略拟合多模态数据分布并扩展了策略的表征能力。Diffuser 首先提出了基于分类器指导的高奖励轨迹生成算法并启发了大量的后续工作。同时,扩散模型也能应用在多任务与多智能体强化学习场景。
图 3:Diffuser 轨迹生成过程和模型示意图
在线强化学习
研究者证明扩散模型对在线强化学习中的价值函数、策略也具备优化能力。例如,DIPO 对动作数据重标注并使用扩散模型训练,使策略避免了基于价值引导训练的不稳定性;CPQL 则验证了单步采样扩散模型作为策略能够平衡交互时的探索和利用。
模仿学习
模仿学习通过学习专家演示数据来重建专家行为。扩散模型的应用有助于提高策略表征能力以及学习多样的任务技能。在机器人控制领域,研究发现扩散模型能够在保持时序稳定性的条件下预测闭环动作序列。Diffusion Policy 采用图像输入的扩散模型生成机器人动作序列。实验表明扩散模型能够生成有效闭环动作序列,同时保证时序一致性。
图 4:Diffusion Policy 模型示意图
轨迹生成
扩散模型在强化学习中的轨迹生成主要聚焦于人类动作生成以及机器人控制两类任务。扩散模型生成的动作数据或视频数据被用于构建仿真模拟器或训练下游决策模型。UniPi 训练了一个视频生成扩散模型作为通用策略,通过接入不同的逆动力学模型来得到底层控制命令,实现跨具身的机器人控制。
图 5:UniPi 决策过程示意图。
数据增强
扩散模型还可以直接拟合原始数据分布,在保持真实性的前提下提供多样的动态扩展数据。例如,SynthER 和 MTDiff-s 通过扩散模型生成了训练任务的完整环境转移信息并将其应用于策略的提升,且结果显示生成数据的多样程度以及准确性都优于历史方法。
图 6:MTDiff 进行多任务规划和数据增强的示意图
未来展望
生成式仿真环境
如图 1 所示,现有研究主要利用扩散模型来克服智能体和经验回放池的局限性,利用扩散模型增强仿真环境的研究比较少。Gen2Sim 利用文生图扩散模型在模拟环境中生成多样化的可操作物体来提高机器人精密操作的泛化能力。扩散模型还有可能在仿真环境中生成状态转移函数、奖励函数或多智能体交互中的对手行为。
加入安全约束
通过将安全约束作为模型的采样条件,基于扩散模型的智能体可以做出满足特定约束的决策。扩散模型的引导采样允许通过学习额外的分类器来不断加入新的安全约束,而原模型的参数保持不变,从而节省额外的训练开销。
检索增强生成
检索增强生成技术能够通过访问外部数据集增强模型能力,在大语言模型上得到广泛的应用。通过检索与智能体当前状态相关的轨迹并输入到模型中,基于扩散的决策模型在这些状态下的性能同样可能得到提升。如果检索数据集不断更新,智能体有可能在不重新训练的情况下表现出新的行为。
组合多种技能
与分类器引导或无分类器引导相结合,扩散模型可以组合多种简单技能来完成复杂任务。离线强化学习中的早期结果也表明扩散模型可以共享不同技能之间的知识,从而有可能通过组合不同技能实现零样本迁移或持续学习。
表格
图 7:相关论文汇总分类表格。
以上就是《构建下一代决策智能体:超越自回归,生成长序列规划轨迹的扩散模型》的详细内容,更多关于模型,论文的资料请关注golang学习网公众号!

- 上一篇
- 在Linux系统中安装Go语言的完整指南

- 下一篇
- 最佳方法将字节文件转换为 int64 切片是什么?
-
- 科技周边 · 人工智能 | 10小时前 | 预防措施
- 豆包AI导出失败?常见错误代码解析及解决方案
- 285浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 东风猛士M817亮相上海车展最“华”越野车
- 292浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 岚图FREE+上海车展亮相,搭载华为ADS4.0,6月预售
- 501浏览 收藏
-
- 科技周边 · 人工智能 | 15小时前 |
- 用豆包A/表情包变现攻略及方法
- 196浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 18次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 29次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 27次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 29次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 31次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览