Python数据分析:从数据中提取价值
目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《Python数据分析:从数据中提取价值》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~
背景 数据已渗透到我们生活的各个层面,从智能传感器到庞大数据库。从这些数据中提取有用信息已变得至关避要,以帮助我们制定明智的决策、提升运营效率和创造创新洞察。使用诸如 pandas、NumPy 等库的编程语言(如:python)扮演着关键的角色。
数据提取基础 数据提取的第一步是将数据从数据源加载到存储结构中。Pandas 的 read_csv() 方法允许从 CSV 文件加载数据,而 read_sql() 方法用于从连接的数据库中获取数据。加载的数据随后可以进行清理和转换,以使其适合于进一步的探索和建模。
数据探索 一旦数据加载完毕,就可以使用 Pandas 的数据框和数据结构来探索数据。.info() 方法提供了数据类型的、缺失值和内存使用量之类的信息。.head() 方法用于预览数据前几行,而 .tail() 方法则展示数据末尾行。
数据清洗 数据清洗是去除不正确的、丢失或重复条来优化数据质量的基本但重要的部分。例如,使用 .dropna() 方法可以丢弃带有缺失值的行,而 .drop_duplicates() 方法可以仅选择唯一行。
数据转换 数据转换涉及将数据从一种结构转换到另一种结构以用于建模。Pandas 的数据框提供方法来重塑数据,如 .stack() 用于从宽表转换为长表,而 .unstack() 用于逆转该转换。
数据聚合 数据聚合将多个观测值的值总结为单个值。Pandas 的 .groupby() 方法用于基于指定分组键将数据分组,而 .agg() 方法用于计算每一组的汇总统计信息(如:平均值、中位数、标准差)
数据可视化 数据可视化是将复杂的数据转换为图形表示形式,使其易于解释和沟通。Matplot 库提供了用于生成条形图、直方图、散点图和折线图的内置方法。
机器语言 机器语言模型,如 Scikit-Learn 中的决策树和分类器,可以用于从数据中获取知识。它们可以帮助分类、回归和聚类数据。训练的模型随后可以用于对新数据的进行推理和进行真实的决策。
案例研究:零售商店数据
考虑一家零售商店的销售数据,包含交易日期、时间、商品类别、销售额和商店编号。
import numpy as np import matplotlib.pyplot as pyplot import seaborn as sns # 加载数据 data = data.read_csv("store_data.csv") # 探索 print(data.info()) print(data.head()) # 数据清洗 data.dropna(inplace=True) # 转换 # 将商店编号设置为行标签 data.set_index("store_no", inplace=True) # 聚合 # 按商店分组并计算每组的每月总销售额 monthly_totals = data.groupby("month").resample("M").sum() # 数据可视化 # 生成每月总销售额的折线图 pyplot.figure(figxize=(10,6)) monthly_totals.plot(kind="line")
结论
使用Python进行数据提取是各种行业和职能中一个必备技能。遵循本文概述的最佳,数据科学家、数据工程师和业务专业人员可以从其数据中提取有用信息,推动明智的决策和卓越的运营。
终于介绍完啦!小伙伴们,这篇关于《Python数据分析:从数据中提取价值》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
-
- 文章 · python教程 | 4小时前 | Numpy Pandas fillna drop_duplicates IQR
- Python数据清洗技巧及实现方法
- 114浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Pythonwhile循环详解与结构解析
- 385浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python中巧用@property装饰器技巧
- 306浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python随机模块random详解与应用技巧
- 275浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Win7上跑高版Python项目,无需手动装msu补丁
- 496浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python中如何实现向量化操作技巧?
- 476浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Pythonrandom模块详解与实用技巧
- 121浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 在Python中画散点图的详细指南
- 347浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 16次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 15次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 43次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 44次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 38次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览