详解Go 中的时间处理
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个Golang开发实战,手把手教大家学习《详解Go 中的时间处理》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
作为程序员,我们经常需要对时间进行处理。在 Go 中,标准库 time 提供了对应的能力。
本文将介绍 time 库中一些重要的函数和方法,希望能帮助到那些一遇到 Go 时间处理问题就需要百度的童鞋。
应对时区问题
在编程中,我们经常会遭遇八小时时间差问题。这是由时区差异引起的,为了能更好地解决它们,我们需要理解几个时间定义标准。
GMT(Greenwich Mean Time),格林威治平时。GMT 根据地球的自转和公转来计算时间,它规定太阳每天经过位于英国伦敦郊区的皇家格林威治天文台的时间为中午12点。GMT 是前世界标准时。
UTC(Coordinated Universal Time),协调世界时。UTC 比 GMT 更精准,它根据原子钟来计算时间。在不需要精确到秒的情况下,可以认为 UTC=GMT。UTC 是现世界标准时。
从格林威治本初子午线起,往东为正,往西为负,全球共划分为 24 个标准时区,相邻时区相差一个小时。
package main import ( "fmt" "time" ) func main() { fmt.Println(time.Now()) }
中国大陆使用的是东八时区的标准时,即北京时间 CST,China Standard Time。
$ go run main.go 2022-07-17 16:37:31.186043 +0800 CST m=+0.000066647
这是默认时区下的结果,time.Now()的打印中会标注+0800 CST。
假设我们是在美国洛杉矶时区下,那得到的结果是什么呢?
$ TZ="America/Los_Angeles" go run main.go 2022-07-17 01:39:12.391505 -0700 PDT m=+0.000069514
可以看到,此时的结果是-0700 PDT 时间,即 PDT(Pacific Daylight Time)太平洋夏季时间。由于时区差异,两次执行的时间结果相差了 15 小时。
注意,在使用 Docker 容器时,系统默认的时区就是 UTC 时间(0 时区),和我们实际需要的北京时间相差八个小时,这是导致八小时时间差问题的经典场景。
时区问题的应对策略,可以详细查看 src/time/zoneinfo_unix.go 中 initLocal() 函数的加载逻辑。例如,可以通过指定环境变量 TZ,修改/etc/localtime文件等方式来解决。
因为时区问题非常重要,所以放在了文章第一部分讲述。下面开始介绍 time 库的使用。
时间瞬间 time.Time
time 库,最核心的对象是 time.Time 结构体。它的定义如下,用以表示某个瞬间的时间。
type Time struct { // wall and ext encode the wall time seconds, wall time nanoseconds, // and optional monotonic clock reading in nanoseconds. wall uint64 ext int64 loc *Location }
计算机在时间处理上,主要涉及到两种时钟。
- 墙上时钟(wall time),又称为钟表时间,用于表示具体的日期与时间。
- 单调时钟(monotonic clocks),总是保证时间是向前的,不会出现墙上时钟的回拨问题,因此它很适合用于测量持续时间段。
wall 和 ext 字段就是用于记录墙上时钟和单调时钟,精度为纳秒。字段的对应位数上关联着用于确定时间的具体年、月、日、小时、分钟、秒等信息。
loc 字段记录时区位置,当 loc 为 nil 时,默认为 UTC 时间。
因为 time.Time 用于表示具有纳秒精度的时间瞬间,在程序中通常应该将它作为值存储和传递,而不是指针。
即在时间变量或者结构体字段中,我们应该使用 time.Time,而非 *time.Time。
获取 time.Time
我们可以通过 Now 函数获取当前本地时间
func Now() Time {}
也可以通过 Date 函数,根据年、月、日等时间和时区参数获取指定时间
func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {}
转换时间戳
计算机世界中,将 UTC 时间 1970 年1月1日 0 时 0 分 0 秒作为 Unix 时间 0。所谓的时间瞬间转换为 Unix 时间戳,即计算的是从 Unix 时间 0 到指定瞬间所经过的秒数、微秒数等。
func (t Time) Unix() int64 {} // 从 Unix 时间 0 经过的秒数 func (t Time) UnixMicro() int64 {} // 从 Unix 时间 0 经过的微秒数 func (t Time) UnixMilli() int64 {} // 从 Unix 时间 0 经过的毫秒数 func (t Time) UnixNano() int64 {} // 从 Unix 时间 0 经过的纳秒数
获取基本字段
t := time.Now() fmt.Println(t.Date()) // 2022 July 17 fmt.Println(t.Year()) // 2022 fmt.Println(t.Month()) // July fmt.Println(t.ISOWeek()) // 2022 28 fmt.Println(t.Clock()) // 22 21 56 fmt.Println(t.Day()) // 17 fmt.Println(t.Weekday()) // Sunday fmt.Println(t.Hour()) // 22 fmt.Println(t.Minute()) // 21 fmt.Println(t.Second()) // 56 fmt.Println(t.Nanosecond())// 494313000 fmt.Println(t.YearDay()) // 198
持续时间 time.Duration
持续时间 time.Duration 用于表示两个时间瞬间 time.Time 之间所经过的时间。它通过 int64 表示纳秒计数,能表示的极限大约为 290 年。
// A Duration represents the elapsed time between two instants // as an int64 nanosecond count. The representation limits the // largest representable duration to approximately 290 years. type Duration int64
在 Go 中,持续时间只是一个以纳秒为单位的数字而已。如果持续时间等于 1000000000,则它代表的含义是 1 秒或 1000 毫秒或 1000000 微秒或 1000000000 纳秒。
例如,相隔 1 小时的两个时间瞬间 time.Time 值,它们之间的持续时间 time.Duration 值为
1*60*60*1000*1000*1000
Go 的 time 包中定义了这些持续时间常量值
const ( Nanosecond Duration = 1 Microsecond = 1000 * Nanosecond Millisecond = 1000 * Microsecond Second = 1000 * Millisecond Minute = 60 * Second Hour = 60 * Minute )
同时,time.Duration 提供了能获取各时间粒度数值的方法
func (d Duration) Nanoseconds() int64 {} // 纳秒 func (d Duration) Microseconds() int64 {} // 微秒 func (d Duration) Milliseconds() int64 {} // 毫秒 func (d Duration) Seconds() float64 {} // 秒 func (d Duration) Minutes() float64 {} // 分钟 func (d Duration) Hours() float64 {} // 小时
时间计算
在学习了时间瞬间和持续时间之后,我们来看如何做时间计算。
func (t Time) Add(d Duration) Time {}
Add 函数用于增加/减少( d 的正值表示增加、负值表示减少) time.Time 的持续时间。我们可以对某瞬时时间,增加或减少指定纳秒级以上的时间。
func (t Time) Sub(u Time) Duration {}
Sub 函数可以得出两个时间瞬间之间的持续时间。
func (t Time) AddDate(years int, months int, days int) Time {}
AddDate 函数基于年、月和日的维度增加/减少 time.Time 的值。
当然,基于当前时间瞬间 time.Now() 的计算是最普遍的需求。因此,time 包还提供了以下便捷的时间计算函数。
func Since(t Time) Duration {}
Since 函数是 time.Now().Sub(t) 的快捷方法。
func Until(t Time) Duration {}
Until 函数是 t.Sub(time.Now()) 的快捷方法。
使用示例
t := time.Now() fmt.Println(t) // 2022-07-17 22:41:06.001567 +0800 CST m=+0.000057466 //时间增加 1小时 fmt.Println(t.Add(time.Hour * 1)) // 2022-07-17 23:41:06.001567 +0800 CST m=+3600.000057466 //时间增加 15 分钟 fmt.Println(t.Add(time.Minute * 15))// 2022-07-17 22:56:06.001567 +0800 CST m=+900.000057466 //时间增加 10 秒钟 fmt.Println(t.Add(time.Second * 10))// 2022-07-17 22:41:16.001567 +0800 CST m=+10.000057466 //时间减少 1 小时 fmt.Println(t.Add(-time.Hour * 1)) // 2022-07-17 21:41:06.001567 +0800 CST m=-3599.999942534 //时间减少 15 分钟 fmt.Println(t.Add(-time.Minute * 15))// 2022-07-17 22:26:06.001567 +0800 CST m=-899.999942534 //时间减少 10 秒钟 fmt.Println(t.Add(-time.Second * 10))// 2022-07-17 22:40:56.001567 +0800 CST m=-9.999942534 time.Sleep(time.Second * 5) t2 := time.Now() // 计算 t 到 t2 的持续时间 fmt.Println(t2.Sub(t)) // 5.004318874s // 1 年之后的时间 t3 := t2.AddDate(1, 0, 0) // 计算从 t 到当前的持续时间 fmt.Println(time.Since(t)) // 5.004442316s // 计算现在到明年的持续时间 fmt.Println(time.Until(t3)) // 8759h59m59.999864s
格式化时间
在其他语言中,一般会使用通用的时间模板来格式化时间。例如 Python,它使用 %Y 代表年、%m 代表月、%d 代表日等。
但是,Go 不一样,它使用固定的时间(需要注意,使用其他的时间是不可以的)作为布局模板,而这个固定时间是 Go 语言的诞生时间。
Mon Jan 2 15:04:05 MST 2006
格式化时间涉及到两个转换函数
func Parse(layout, value string) (Time, error) {}
Parse 函数用于将时间字符串根据它所能对应的布局转换为 time.Time 对象。
func (t Time) Format(layout string) string {}
Formate 函数用于将 time.Time 对象根据给定的布局转换为时间字符串。
示例
const ( layoutISO = "2006-01-02" layoutUS = "January 2, 2006" ) date := "2012-08-09" t, _ := time.Parse(layoutISO, date) fmt.Println(t) // 2012-08-09 00:00:00 +0000 UTC fmt.Println(t.Format(layoutUS)) // August 9, 2012
在 time 库中,Go 提供了一些预定义的布局模板常量,这些可以直接拿来使用。
const ( Layout = "01/02 03:04:05PM '06 -0700" // The reference time, in numerical order. ANSIC = "Mon Jan _2 15:04:05 2006" UnixDate = "Mon Jan _2 15:04:05 MST 2006" RubyDate = "Mon Jan 02 15:04:05 -0700 2006" RFC822 = "02 Jan 06 15:04 MST" RFC822Z = "02 Jan 06 15:04 -0700" // RFC822 with numeric zone RFC850 = "Monday, 02-Jan-06 15:04:05 MST" RFC1123 = "Mon, 02 Jan 2006 15:04:05 MST" RFC1123Z = "Mon, 02 Jan 2006 15:04:05 -0700" // RFC1123 with numeric zone RFC3339 = "2006-01-02T15:04:05Z07:00" RFC3339Nano = "2006-01-02T15:04:05.999999999Z07:00" Kitchen = "3:04PM" // Handy time stamps. Stamp = "Jan _2 15:04:05" StampMilli = "Jan _2 15:04:05.000" StampMicro = "Jan _2 15:04:05.000000" StampNano = "Jan _2 15:04:05.000000000" )
下面是我们可选的布局参数对照表
年 06/2006 月 01/1/Jan/January 日 02/2/_2 星期 Mon/Monday 小时 03/3/15 分 04/4 秒 05/5 毫秒 .000/.999 微秒 .000000/.999999 纳秒 .000000000/.999999999 am/pm PM/pm 时区 MST 时区小时数差-0700/-07/-07:00/Z0700/Z07:00
时区转换
在文章开头,我们介绍了时区问题。如果在代码中,需要获取同一个 time.Time 在不同时区下的结果,我们可以使用它的 In 方法。
func (t Time) In(loc *Location) Time {}
它的使用非常简单,直接看示例代码
now := time.Now() fmt.Println(now) // 2022-07-18 21:19:59.9636 +0800 CST m=+0.000069242 loc, _ := time.LoadLocation("UTC") fmt.Println(now.In(loc)) // 2022-07-18 13:19:59.9636 +0000 UTC loc, _ = time.LoadLocation("Europe/Berlin") fmt.Println(now.In(loc)) // 2022-07-18 15:19:59.9636 +0200 CEST loc, _ = time.LoadLocation("America/New_York") fmt.Println(now.In(loc)) // 2022-07-18 09:19:59.9636 -0400 EDT loc, _ = time.LoadLocation("Asia/Dubai") fmt.Println(now.In(loc)) // 2022-07-18 17:19:59.9636 +0400 +04
总结
整体而言,time 库提供的时间处理函数和方法,基本满足我们的使用需求。
有意思的是,Go 时间格式化转换必须采用 Go 诞生时间,确实有够自恋。
文中关于golang的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《详解Go 中的时间处理》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- Go1.18新特性工作区模糊测试及泛型的使用详解

- 下一篇
- Go语言中使用urfave/cli命令行框架
-
- 默默的荷花
- 这篇文章内容真是及时雨啊,太详细了,很好,码住,关注up主了!希望up主能多写Golang相关的文章。
- 2023-01-11 11:00:24
-
- 瘦瘦的火龙果
- 细节满满,mark,感谢楼主的这篇文章,我会继续支持!
- 2023-01-10 20:19:10
-
- 等待的大地
- 很好,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢楼主分享技术贴!
- 2023-01-09 18:00:46
-
- 洁净的悟空
- 这篇技术贴真是及时雨啊,博主加油!
- 2023-01-07 22:24:57
-
- Golang · Go教程 | 4小时前 |
- DebianOpenSSL安装失败的终极解决方案
- 501浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- Debian数据快速提取技巧
- 216浏览 收藏
-
- Golang · Go教程 | 8小时前 |
- Debian系统JS依赖管理终极攻略
- 218浏览 收藏
-
- Golang · Go教程 | 10小时前 |
- Debian上Hadoop作业调度实用技巧
- 100浏览 收藏
-
- Golang · Go教程 | 10小时前 |
- Go语言闭包误区与匿名函数深度解析
- 222浏览 收藏
-
- Golang · Go教程 | 10小时前 |
- Debian系统安全回收数据的正确攻略
- 111浏览 收藏
-
- Golang · Go教程 | 12小时前 |
- Debian高效fetch技巧与使用攻略
- 125浏览 收藏
-
- Golang · Go教程 | 18小时前 |
- Debian邮件服务器升级维护攻略
- 474浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 14次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 23次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 30次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 40次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 35次使用
-
- Golangmap实践及实现原理解析
- 2022-12-28 505浏览
-
- 试了下Golang实现try catch的方法
- 2022-12-27 502浏览
-
- Go语言中Slice常见陷阱与避免方法详解
- 2023-02-25 501浏览
-
- Golang中for循环遍历避坑指南
- 2023-05-12 501浏览
-
- Go语言中的RPC框架原理与应用
- 2023-06-01 501浏览