当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > MIT博士获得第三届AAAI/ACM SIGAI博士论文奖,其260多页论文探索模型泛化

MIT博士获得第三届AAAI/ACM SIGAI博士论文奖,其260多页论文探索模型泛化

来源:机器之心 2024-03-01 15:30:30 0浏览 收藏

科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《MIT博士获得第三届AAAI/ACM SIGAI博士论文奖,其260多页论文探索模型泛化》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


AAAI 2024 奖项陆续公布,继杰出论文奖后,今天博士论文奖也公布了。

这几天,第 38 届国际 AI 顶会 AAAI 2024 在加拿大温哥华会议中心举行。本届 AAAI 会议共有 10504 篇投稿,录取 2527 篇,录取率为 24.1%。

AAAI 官方已经公布杰出论文奖(Outstanding Paper Award),其中有三篇论文获奖,其中包括西安电子科技大学团队的《Reliable Conflictive Multi-view Learning》。值得一提的是,这次获奖的论文中也有华人学者的身影。

AAAI 2024宣布了第三届、2021年AAAI/ACM SIGAI博士论文奖的获奖者和获奖论文。本次获奖者是MIT的女博士Shibani Santurkar,她的获奖论文题为《超越准确性的机器学习:模型泛化的特征视角》。

哈佛大学博士 Bryan Wilder 的获奖论文《人口健康领域的人工智能:网络融合数据和算法》使他获得了本届博士论文奖的提名。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

AAAI/ACM SIGAI 博士论文奖是由 AAAI 和 ACM SIGAI 联合设立的,旨在表彰和激励人工智能领域的杰出博士研究和论文。该奖项是每年举办的,获奖者将有机会在年度的 AAAI 会议上发表演讲,展示他们的研究成果。这一奖项的设立旨在推动人工智能领域的创新发展,激励年轻研究人员在该领域取得卓越成就。

据了解,第一届奖项由 MIT 博士吴佳俊(现为斯坦福助理教授)获得,获奖论文题目为《学习看物理世界》(Learning to See the Physical World)。

第二届奖项由 CMU 博士、 OpenAI 研究科学家 Noam Brown 摘得,获奖论文题目为《大型对抗性不完美信息博弈的均衡发现》(Equilibrium Finding for Large Adversarial Imperfect-Information Games)。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

                                吴佳俊(左)、Noam Brown(右)。

2021 AAAI/ACM SIGAI 博士论文奖

今年获得该奖项的论文题目为「 Machine Learning Beyond Accuracy: A Features Perspective On Model Generalization」,作者是当时在 MIT 求学的计算机科学博士 Shibani Santurkar,Santurkar 现在为斯坦福大学计算机科学博士后。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

论文地址:https://dspace.mit.edu/handle/1721.1/139920

论文摘要:由于机器学习(ML)在各种基准上的突出表现,已被很多研究者应用于解决现实世界问题。然而,越来越多的证据表明模型基准性能并不能完全反映全部情况。事实证明,现有的机器学习模型非常脆弱:最突出的问题是它们对对抗性示例输入扰动的敏感性。

本文重新审视对抗性示例,将它们用作了解当前模型的窗口,该研究为为什么出现这种敏感性提供了新的视角:这是模型依赖于可预测但脆弱的输入特征的直接后果。

研究结果表明,对抗性示例实际上反映了一个更深层次的问题:当前模型在基准测试上取得成功的机制,与人类所预期的基本不一致。这引发了一个问题:我们如何构建机器学习(ML)模型,使其不仅在开发时使用的基准测试上具有泛化性,而且还能在真实世界中得到泛化?

为了回答这个问题,该研究从特征视角(features perspective)检查机器学习流程,不仅关注模型预测的标签,还关注它们使用哪些特征来进行预测。因此,在论文的第二部分,研究者开发了一套工具来更好地理解:(i)模型学习了哪些特征,(ii)为什么学习这些特征,以及(iii)如何在训练或测试时修改学到的特征。这些工具使得用户在模型开发过程中进行关键设计选择,比如如何创建数据集,以及训练和评估模型。在这些洞见的基础上,论文随后提出了对机器学习流程的具体改进,以提高模型的泛化能力。

作者介绍

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

个人主页:https://shibanisanturkar.com/

Shibani Santurkar 现在为斯坦福大学计算机科学专业的博士后,与 Tatsu Hashimoto、Percy Liang 和 Tengyu Ma(马腾宇) 一起进行研究。在此之前,她在麻省理工学院获得了博士学位,师从 Aleksander Madry 和 Nir Shavit 。Shibani Santurkar 在印度理工学院孟买分校获得了电气工程学士和硕士学位。此前,她还在 Google Brain 和 Vicarious 实习。

在 Google Scholar 上,她的论文引用量近万。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

博士论文奖提名

本届 AAAI/ACM SIGAI 博士论文提名奖获得者为哈佛大学博士 Bryan Wilder,现为 CMU 机器学习系助理教授。研究重心为高风险社会环境中实现公平、数据驱动决策的 AI,并整合机器学习、优化和因果推理方法。

在加入 CMU 之前,他曾是哈佛大学公共卫生学院和 CMU 的施密特科学研究员项目的博士后研究员。

第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

论文标题:AI for Population Health: Melding Data and Algorithms on Networks

论文地址:https://dash.harvard.edu/handle/1/37370083

参考链接:https://aaai.org/about-aaai/aaai-awards/aaai-acm-sigai-doctoral-dissertation-award/

以上就是《MIT博士获得第三届AAAI/ACM SIGAI博士论文奖,其260多页论文探索模型泛化》的详细内容,更多关于产业,西安电子科技大学的资料请关注golang学习网公众号!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
将时间“””解析为“”2006-01-02T15:04:05Z07:00””:无法将“””解析为“2006”将时间“””解析为“”2006-01-02T15:04:05Z07:00””:无法将“””解析为“2006”
上一篇
将时间“””解析为“”2006-01-02T15:04:05Z07:00””:无法将“””解析为“2006”
重要的Go语言类库一览
下一篇
重要的Go语言类库一览
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    16次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    12次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    12次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    17次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码