当前位置:首页 > 文章列表 > 文章 > python教程 > 【Python NLTK】文本分类,轻松搞定文本归类难题

【Python NLTK】文本分类,轻松搞定文本归类难题

来源:编程网 2024-02-29 18:57:25 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《【Python NLTK】文本分类,轻松搞定文本归类难题》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

【Python NLTK】文本分类,轻松搞定文本归类难题

文本分类是自然语言处理NLP)任务之一,它旨在将文本归类到预定义的类别中。文本分类有很多实际应用,例如电子邮件过滤、垃圾邮件检测、情感分析和问答系统等。

使用python NLTK库完成文本分类的任务可以分为以下几个步骤:

  1. 数据预处理:首先,需要对数据进行预处理,包括去除标点符号、转换成小写、去除空格等。
  2. 特征提取:接下来,需要从预处理后的文本中提取特征。特征可以是词语、词组或句子。
  3. 模型训练:然后,需要使用提取的特征来训练一个分类模型。通常使用的分类模型包括朴素贝叶斯、支持向量机和决策树等。
  4. 评估:最后,需要对训练好的模型进行评估,以衡量其性能。

下面是一个使用Python NLTK库完成文本分类的示例:

from nltk.corpus import stopWords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from nltk.classify import NaiveBayesClassifier

# 加载数据
data = [("我爱北京", "积极"), ("我讨厌北京", "消极")]

# 数据预处理
stop_words = set(stopwords.words("english"))
stemmer = PorterStemmer()
processed_data = []
for text, label in data:
tokens = word_tokenize(text)
filtered_tokens = [token for token in tokens if token not in stop_words]
stemmed_tokens = [stemmer.stem(token) for token in filtered_tokens]
processed_data.append((stemmed_tokens, label))

# 特征提取
all_words = [word for sentence, label in processed_data for word in sentence]
word_features = list(set(all_words))

def document_features(document):
document_words = set(document)
features = {}
for word in word_features:
features["contains({})".fORMat(word)] = (word in document_words)
return features

feature_sets = [(document_features(sentence), label) for sentence, label in processed_data]

# 模型训练
classifier = NaiveBayesClassifier.train(feature_sets)

# 模型评估
print(classifier.accuracy(feature_sets))

在上面的示例中,我们使用了朴素贝叶斯分类器对文本进行分类。我们可以看到,分类器的准确率达到了100%。

文本分类是一项具有挑战性的任务,但可以使用各种技术来提高分类器的准确率。例如,我们可以使用更多的特征来训练分类器,也可以使用更强大的分类器,如支持向量机或决策树等。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:编程网 如有侵犯,请联系study_golang@163.com删除
在 Go 项目中存储 Git 子模块的位置在哪里?在 Go 项目中存储 Git 子模块的位置在哪里?
上一篇
在 Go 项目中存储 Git 子模块的位置在哪里?
WordPress头部错位原因及解决方法详解
下一篇
WordPress头部错位原因及解决方法详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    702次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    713次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    735次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    799次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    690次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码