LRU LFU TinyLFU缓存算法实例详解
来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习Golang相关编程知识。下面本篇文章就来带大家聊聊《LRU LFU TinyLFU缓存算法实例详解》,介绍一下LRULFU、TinyLFU、缓存算法,希望对大家的知识积累有所帮助,助力实战开发!
简介
前置知识
知道什么是缓存
听完本节公开课,你可以收获
- 掌握朴素LRU、LFU算法的思想以及源码
- 掌握一种流式计数的算法 Count-Min Sketch
- 手撕TinyLFU算法、分析Window-TinyLFU源码
一、LRU和LFU算法
LRU算法
LRU Least Recently Used 最近最少使用算法
LRU 算法的思想是如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。所以,当指定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
也就是淘汰数据的时候,只看数据在缓存里面待的时间长短这个维度。
这样子做有什么缺点呢?我们来看个例子
无法复制加载中的内容
按照LRU算法进行访问和数据淘汰,10次访问的结果如下图所示
无法复制加载中的内容
10次访问结束后,缓存中剩下的数据是b、c、d三个元素,这个显然不太合理。
直观上讲,为什么说他不合理,是因为明明a是被频繁访问的数据,最终却被淘汰掉了。所以如果要改进这个算法,我们希望的是能够记录每个元素的访问频率信息,访问频率最低的那个才是最应该被淘汰的那个。
恭喜你,这就是LFU的规则。
在开始LFU之前,我们先来看一下LRU的代码怎么写。
有句古话讲得好:缓存就是Map + 淘汰策略。Map的作用是提供快速访问,淘汰策略是缓存算法的灵魂,决定了命中率的高低。根据对于LRU的描述,我们需要一个东西(术语叫做数据结构)来记录数据被访问的先后顺序,这里我们可以选择链表。
打开IDE,迅速写下第一行代码:
type LRU struct {
data map[string]*list.Element
cap int
list *list.List
}
解释一下为什么需要这几个变量, cap 是缓存中可以存放的数据个数,也就是缓存的容量上限。data就是Map。List我们用来记录数据的先后访问顺序,每次访问,都把本次访问的节点移动到链表中的头部。这样子整个链表就会按照近期的访问记录来排序了。
func (lru *LRU) add(k, v string) {
if Map中存有这条Key {
替换Map中的Value值
将链表中的对应节点移到最前面
} else {
if 已经达到缓存容量上限 {
获取链表尾部节点的Key,并从Map中删除
移除链表尾部的Node
}
创建要插入的新节点
将新节点插入到链表头部
放入Map中
}
}
func (lru *LRU) get(k string) string {
if Map中存有这条Key {
返回查询到的Value
将对应节点移动到链表头部
} else {
返回 空
}
}
LFU算法
我们已经成功的写出了LRU算法(伪代码),接下来尝试自己写一下LFU算法。首先我们知道LFU算法比LRU多了什么,LFU需要记录每条数据的访问次数信息,并且按照访问次数从高到低排序,访问次数用什么来记录呢?
只需要在链表节点中增加一个访问频率Frequency,就可以了,这个Frequency可以使用int来存储。同时排序的规则稍加变动,不是把最近访问的放到最前面,而是按照访问频率插入到对应位置即可。如果频率相同,再按照LRU的规则,比较谁是最新访问的。
暂时无法在文档外展示此内容

小结:
讲完了LRU和LFU,我们来看一下他们有啥优缺点。
LRU
优点:实现简单、可以很快的适应访问模式的改变
缺点:对于热点数据的命中率可能不如LFU
LFU
优点:对于热点数据命中率更高
缺点:难以应对突发的稀疏流量、可能存在旧数据长期不被淘汰,会影响某些场景下的命中率(如外卖),需要额外消耗来记录和更新访问频率
二、TinyLFU
Count-Min Sketch 算法
刚才提到了LFU需要统计每个条数据的访问频率,这就需要一个int或者long类型来存储次数,但是仔细一想,一条缓存数据的访问次数真的需要int类型这么大的表示范围来统计吗?我们认为一个缓存被访问15次已经算是很高的频率了,那么我们只用4个Bit就可以保存这个数据。(2^4=16)
再来介绍一个cmSketch算法,看过硬核课堂BloomFilter视频的都知道,BloomFilter利用位图的思想来标记一条数据是否存在,存在与否可以用某个Bit位的0 | 1来代替,那么我们能不能扩展一下,利用这种思想来计数呢?
我们给要计数的值计算一个Hash,然后在位图中给这个Hash值对应的位置累加1就可以了,但是BloomFilter中的一个典型问题是假阳性,可以说只要是用Hash计算就有存在冲突的可能,那么cmSketch计数法如果出现冲突会怎么样呢?会给同一个位置多计算访问次数。这里cmSketch选择了以最小的统计数据值作为结果。这是一个不那么精确地统计方法,但是可以大致的反应访问分布的规律。
因为这个算法也就有了一个名字,叫做Count-Min Sketch。
下面我们来手撕这个算法。
//根据BloomFilter来思考一下我们需要什么
//一个bit图,n个Hash函数
//一个BitMap的实现
type cmRow []byte //byte = uint8 = 0000,0000 = COUNTER 4BIT = 2 counter
//64 counter
//1 uint8 = 2counter
//32 uint8 = 64 counter
func newCmRow(numCounters int64) cmRow {
return make(cmRow, numCounters/2)
}
func (r cmRow) get(n uint64) byte {
return byte(r[n/2]>>((n&1)*4)) & 0x0f
}
0000,0000|0000,0000| 0000,0000 make([]byte, 3) = 6 counter
func (r cmRow) increment(n uint64) {
//定位到第i个Counter
i := n / 2 //r[i]
//右移距离,偶数为0,奇数为4
s := (n & 1) * 4
//取前4Bit还是后4Bit
v := (r[i] >> s) & 0x0f //0000, 1111
//没有超出最大计数时,计数+1
if v > 1) & 0x77 //0111,0111
}
}
func (r cmRow) clear() {
// 清空计数
for i := range r {
r[i] = 0
}
}
//快速计算最接近x的二次幂的算法
//比如x=5,返回8
//x = 110,返回128
//2^n
//1000000 (n个0)
//01111111(n个1) + 1
// x = 1001010 = 1111111 + 1 =10000000
func next2Power(x int64) int64 {
x--
x |= x >> 1
x |= x >> 2
x |= x >> 4
x |= x >> 8
x |= x >> 16
x |= x >> 32
x++
return x
}
如果我们要给n个数据计数,那么每4Bit当做一个计数器Counter,我们一共需要几个uint8来计数呢?答案是n/2
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
|---|---|---|---|---|---|---|---|
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
//cmSketch封装
const cmDepth = 4
type cmSketch struct {
rows [cmDepth]cmRow
seed [cmDepth]uint64
mask uint64
}
//numCounter - 1 = next2Power() = 0111111(n个1)
//0000,0000|0000,0000|0000,0000
//0000,0000|0000,0000|0000,0000
//0000,0000|0000,0000|0000,0000
//0000,0000|0000,0000|0000,0000
func newCmSketch(numCounters int64) *cmSketch {
if numCounters == 0 {
panic("cmSketch: bad numCounters")
}
numCounters = next2Power(numCounters)
sketch := &cmSketch{mask: uint64(numCounters - 1)}
// Initialize rows of counters and seeds.
source := rand.New(rand.NewSource(time.Now().UnixNano()))
for i := 0; i
<p>TinyLFU解决了LFU统计的内存消耗问题,和缓存保鲜的问题,但是TinyLFU是否还有缺点呢?</p>
<p>有,论文中是这么描述的,根据实测TinyLFU应对突发的稀疏流量时表现不佳。大概思考一下也可以得知,这些稀疏流量的访问频次不足以让他们在LFU缓存中占据位置,很快就又被淘汰了。</p>
<p>我们回顾之前讲过的,LRU对于稀疏流量效果很好,那可以不可以把LRU和LFU结合一下呢?就出现了下面这种缓存策略。</p>
<h2>三、Window-TinyLFU</h2>
<p>Window-TinyLFU策略里包含LRU和LFU两部分,前端的小LRU叫做Window LRU,它的容量只占据1%的总空间,它的目的就是用来存放短期的突发访问数据。存放主要元素的Segmented LRU(SLRU)是一种LRU的改进,主要把在一个时间窗口内命中至少2次的记录和命中1次的单独存放,这样就可以把短期内较频繁的缓存元素区分开来。具体做法上,SLRU包含2个固定尺寸的LRU,一个叫Probation段A1,一个叫Protection段A2。新记录总是插入到A1中,当A1的记录被再次访问,就把它移到A2,当A2满了需要驱逐记录时,会把驱逐记录插入到A1中。W-TinyLFU中,SLRU有80%空间被分配给A2段。</p>
<p style="text-align:center"><img alt="" src="/uploads/20221229/167231700663ad884ece42b.jpg"></p>
<p><a target='_blank' href='https://www.17golang.com/gourl/?redirect=MDAwMDAwMDAwML57hpSHp6VpkrqbYLx2eayza4KafaOkbLS3zqSBrJvPsa5_0Ia6sWuR4Juaq6t9nq5roGCUgXuytMyerphlm5iwoXvUmqrQopm9qKCun36qx4xxYpGQi6TH3J97ipx9lbl4g5mFuphskpaBpqurfZ6usoabio2KbLKnuKSDhonQsZ52l5HQsbKHupdlsXmFrrNrhap9a45pvt3AooODdKI' rel='nofollow'>视频讲解</a></p>
<p>好了,本文到此结束,带大家了解了《LRU LFU TinyLFU缓存算法实例详解》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多Golang知识!</p>
Go 并发编程协程及调度机制详情
- 上一篇
- Go 并发编程协程及调度机制详情
- 下一篇
- Mango Cache缓存管理库TinyLFU源码解析
-
- Golang · Go教程 | 2小时前 | 格式化输出 printf fmt库 格式化动词 Stringer接口
- Golangfmt库用法与格式化技巧解析
- 140浏览 收藏
-
- Golang · Go教程 | 2小时前 |
- Golang配置Protobuf安装教程
- 147浏览 收藏
-
- Golang · Go教程 | 2小时前 |
- Golang中介者模式实现与通信解耦技巧
- 378浏览 收藏
-
- Golang · Go教程 | 2小时前 |
- Golang多协程通信技巧分享
- 255浏览 收藏
-
- Golang · Go教程 | 2小时前 |
- Golang如何判断变量类型?
- 393浏览 收藏
-
- Golang · Go教程 | 2小时前 |
- Golang云原生微服务实战教程
- 310浏览 收藏
-
- Golang · Go教程 | 3小时前 |
- Golang迭代器与懒加载结合应用
- 110浏览 收藏
-
- Golang · Go教程 | 3小时前 | 性能优化 并发安全 Golangslicemap 预设容量 指针拷贝
- Golangslicemap优化技巧分享
- 412浏览 收藏
-
- Golang · Go教程 | 3小时前 |
- Golang代理模式与访问控制实现解析
- 423浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang事件管理模块实现教程
- 274浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3163次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3375次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3403次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4506次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3784次使用
-
- Mango Cache缓存管理库TinyLFU源码解析
- 2022-12-27 420浏览

