GO CountMinSketch计数器(布隆过滤器思想的近似计数器)
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个Golang开发实战,手把手教大家学习《GO CountMinSketch计数器(布隆过滤器思想的近似计数器)》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
简介
CountMinSketch
是一种计数器,用来统计一个元素的计数,它能够以一个非常小的空间统计大量元素的计数,同时保证高的性能及准确性。
与布隆过滤器类似,由于它是基于概率的,因此它所统计的计数是有一定概率存在误差的,也就是可能会比真实的计数大。比如一个元素实际的计数是10,但是计算器的计算结果可能比10大。因此适合能够容忍计数存在一定误差的场景,比如社交网络中推文的访问次数。
它一秒能够进行上百万次操作(主要取决于哈希函数的速度),并且如果我们每天有一个长度为100亿的数据流需要进行计数,计数值允许的误差范围是100,允许的错误率是0.1%,计数器大小是32位,只需要7.2GB内存,这完全可以单机进行计数。
原理
数据结构
CountMinSketch计数器的数据结构是一个二维数组
,每一个元素都是一个计数器,计数器可以使用一个数值类型进行表示,比如无符号int
:
增加计数
每个元素会通过不同的哈希函数映射到每一行的某个位置,并增加对应位置上的计数:
估算计数
估算计数也是如上图流程,根据哈希映射到每一行的对应位置,然后读取所有行的计数,返回其中最小的一个。
返回最小的一个是因为其他其他元素也可能会映射到自身所映射位置上面,导致计数比真实计数大,因此最小的一个计数最可能是真实计数:
比如上图元素123
映射到了元素abc
第一行的相同位置,因此这个位置的计数累加了元素abc和元素123的计数和。但是只要我们取三行里面最小的一个计数,那么就能容忍这种情况。
当然,如果一个元素的每一行的对应位置都被其他元素所映射,那么这个估算的计数就会比真实计数大。
哈希函数
CountMinSketch计数器里面的哈希函数需要是彼此独立且均匀分布(类似于哈希表的哈希函数),而且需要尽可能的快,比如murmur3就是一个很好的选择。
CountMinSketch计数器的性能严重依赖于哈希函数的性能,而一般哈希函数的性能则依赖于输入串(一般为字节数组)的长度,因此为了提高CountMinSketch计数器的性能建议减少输入串的长度。
下面是一个简单的性能测试,单位是字节,可以看到时间的消耗随着元素的增大基本是线性增长的:
pkg: github.com/jiaxwu/gommon/counter/cm cpu: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz BenchmarkAddAndEstimate/1-8 2289142 505.9 ns/op 1.98 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/2-8 2357380 513.7 ns/op 3.89 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/4-8 2342382 496.9 ns/op 8.05 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/8-8 2039792 499.7 ns/op 16.01 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/16-8 2350281 526.8 ns/op 30.37 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/32-8 2558060 444.3 ns/op 72.03 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/64-8 2540272 459.5 ns/op 139.29 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/128-8 1919720 538.6 ns/op 237.67 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/256-8 1601738 720.6 ns/op 355.28 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/512-8 950584 1599 ns/op 320.18 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/1024-8 363592 3169 ns/op 323.17 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/2048-8 187500 5888 ns/op 347.81 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/4096-8 130425 8825 ns/op 464.15 MB/s 0 B/op 0 allocs/op BenchmarkAddAndEstimate/8192-8 67198 17460 ns/op 469.18 MB/s 0 B/op 0 allocs/op
数组大小、哈希函数数量、错误范围、错误率
数组大小、哈希函数数量、错误范围和错误率之间是互相影响的,如果我们想减少错误率和错误范围,则需要更大的数组和更多的哈希函数。但是我们很难直观的计算出这些参数,还好有两个公式可以帮助我们计算出准确的数值:
在我们可以确定我们的数据流大小
和能够容忍的错误范围
和错误率
的情况下,我们可以根据下面公式计算数组大小
和哈希函数数量
:
n = 数据流大小 m = 数组大小 k = 哈希函数数量 eRange = 错误范围(ErrorRange) eRate = 错误率(ErrorRate) ceil() = 向上取整操作 E = 2.718281828459045(自然常数) m = ceil(E/(eRange/n)) k = ceil(ln(1/eRate))
应用
TopK(海量数据计数器)
对于海量数据流中频率最高的K个数,如果使用常规的map
,由于内存大小限制,一般情况下单机无法完成计算,需要把数据路由到多台机器上进行计数。
而如果我们使用CountMinSketch
则能够在单机情况下处理大量的数据,比如开头所提到对于一个长度为100亿的数据流进行计数,只需要7.2GB内存。这个计数结果可能存在一定误差,不过我们可以在这个基础上再进行过滤。
TinyLFU
TinyLFU是一个缓存淘汰策略,它里面有LFU策略的思想,LFU是一个基于访问频率的淘汰策略,因此需要统计每个元素被访问的次数。如果对每个元素使用一个独立的计数器,那么这个成本会很大,而且对于一个缓存淘汰策略来说,我们并不需要这个计数器非常大且非常准确。
因此TinyLFU使用一个计数器长度为4位的CountMinSketch
计数器统计每个元素的频率,减少计数所消耗的内存空间,同时还引入了计数衰减机制避免某些之前热门但是当前已经很少被访问的元素很难被淘汰。
实现
这里给出一个Golang的泛型实现,这个实现支持uint8
、uint16
、uint32
、uint64
等基本类型计数器,实际上还可以实现比如长度为2bit
、4bit
、6bit
的计数器,但是代码会稍微复杂一点(特别是非2的次方的计数器)。
package cm import ( "math" "github.com/jiaxwu/gommon/hash" mmath "github.com/jiaxwu/gommon/math" "github.com/jiaxwu/gommon/mem" "golang.org/x/exp/constraints" ) // Count-Min Sketch 计数器,原理类似于布隆过滤器,根据哈希映射到多个位置,然后在对应位置进行计数 // 读取时拿对应位置最小的 // 适合需要一个比较小的计数,而且不需要这个计数一定准确的情况 // 可以减少空间消耗 // https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.8351&rep=rep1&type=pdf type Counter[T constraints.Unsigned] struct { counters [][]T countersLen uint64 // 计数器长度 hashs []*hash.Hash // 哈希函数列表 maxCount T // 最大计数值 } // 创建一个计数器 // size:数据流大小 // errorRange:计数值误差范围(会超过真实计数值) // errorRate:错误率 func New[T constraints.Unsigned](size uint64, errorRange T, errorRate float64) *Counter[T] { // 计数器长度 countersLen := uint64(math.Ceil(math.E / (float64(errorRange) / float64(size)))) // 哈希个数 hashsCnt := int(math.Ceil(math.Log(1.0 / errorRate))) hashs := make([]*hash.Hash, hashsCnt) counters := make([][]T, hashsCnt) for i := 0; i <h3>数据结构</h3> <p>这里的数据结构核心是一个<code>k*m的二维数组counters</code>,k是哈希函数数量,m是数组每一行的长度;countersLen其实就是m;hashs是哈希函数列表;maxCount是当前类型的最大值,比如uint8就是255,下面的计算需要用到它。</p> <pre class="brush:go;">type Counter[T constraints.Unsigned] struct { counters [][]T countersLen uint64 // 计数器长度 hashs []*hash.Hash // 哈希函数列表 maxCount T // 最大计数值 }
初始化
我们首先使用上面提到的两个公式计算数组每一行长度和哈希函数的数量,然后初始化哈希函数列表和二维数组。
// 创建一个计数器 // size:数据流大小 // errorRange:计数值误差范围(会超过真实计数值) // errorRate:错误率 func New[T constraints.Unsigned](size uint64, errorRange T, errorRate float64) *Counter[T] { // 计数器长度 countersLen := uint64(math.Ceil(math.E / (float64(errorRange) / float64(size)))) // 哈希个数 hashsCnt := int(math.Ceil(math.Log(1.0 / errorRate))) hashs := make([]*hash.Hash, hashsCnt) counters := make([][]T, hashsCnt) for i := 0; i <h3>增加计数</h3> <p>对于一个元素,我们需要把它根据每个哈希函数计算出它在每一行数组的位置,然后增加对应位置计数器的计数值。</p> <p>这里需要注意的是,计数值可能会溢出,因此我们首先判断是否溢出,如果溢出则设置为最大值。</p> <pre class="brush:go;">// 增加元素的计数 func (c *Counter[T]) Add(b []byte, val T) { for i, h := range c.hashs { index := h.Sum64(b) % c.countersLen if c.counters[i][index]+val <h3>估算计数</h3> <p>同增加计数原理,把元素根据哈希函数映射到每一行数组的对应位置,然后选择所有行中最小的那个计数值。</p> <pre class="brush:go;">// 估算元素的计数 func (c *Counter[T]) Estimate(b []byte) T { minCount := c.maxCount for i, h := range c.hashs { index := h.Sum64(b) % c.countersLen count := c.counters[i][index] if count == 0 { return 0 } minCount = mmath.Min(minCount, count) } return minCount }
今天关于《GO CountMinSketch计数器(布隆过滤器思想的近似计数器)》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于golang的内容请关注golang学习网公众号!

- 上一篇
- Golang操作命令行的几种方式总结

- 下一篇
- 一篇文章说清楚 go get 使用私有库的方法
-
- 含蓄的音响
- 这篇技术贴真是及时雨啊,太详细了,很有用,码起来,关注up主了!希望up主能多写Golang相关的文章。
- 2023-01-19 06:25:59
-
- 坦率的黄豆
- 太细致了,收藏了,感谢大佬的这篇技术贴,我会继续支持!
- 2023-01-18 21:21:54
-
- 大意的钻石
- 感谢大佬分享,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢作者大大分享文章内容!
- 2023-01-06 04:32:33
-
- Golang · Go教程 | 3分钟前 |
- Golangnet/http教程:搭建服务器与客户端方法
- 217浏览 收藏
-
- Golang · Go教程 | 6分钟前 |
- GolangCookie与Session管理全解析
- 225浏览 收藏
-
- Golang · Go教程 | 6分钟前 |
- Golang原子替换:rename实现与事务解析
- 161浏览 收藏
-
- Golang · Go教程 | 12分钟前 |
- Gin框架构建RESTAPI入门教程
- 455浏览 收藏
-
- Golang · Go教程 | 14分钟前 |
- Golang日志优化:异步缓冲提升效率
- 387浏览 收藏
-
- Golang · Go教程 | 15分钟前 |
- Golang覆盖率统计方法与工具使用技巧
- 119浏览 收藏
-
- Golang · Go教程 | 16分钟前 |
- Golangcontext.WithValue线程安全使用全解析
- 226浏览 收藏
-
- Golang · Go教程 | 18分钟前 |
- Golangselect阻塞问题与channel非阻塞技巧
- 287浏览 收藏
-
- Golang · Go教程 | 24分钟前 |
- Golang接口隐式实现,体现鸭子类型思想
- 341浏览 收藏
-
- Golang · Go教程 | 24分钟前 |
- Golang时间处理性能优化技巧分享
- 373浏览 收藏
-
- Golang · Go教程 | 34分钟前 |
- Golang位操作优化:bitset替代常规方法
- 208浏览 收藏
-
- Golang · Go教程 | 35分钟前 |
- Golang微服务热更新配置方案
- 361浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 95次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 89次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 105次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 98次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 97次使用
-
- Golangmap实践及实现原理解析
- 2022-12-28 505浏览
-
- 试了下Golang实现try catch的方法
- 2022-12-27 502浏览
-
- Go语言中Slice常见陷阱与避免方法详解
- 2023-02-25 501浏览
-
- Golang中for循环遍历避坑指南
- 2023-05-12 501浏览
-
- Go语言中的RPC框架原理与应用
- 2023-06-01 501浏览